Modeling and Predicting Driver Behavior in ACT-R

Dario SalvucciDrexel University

Why Driving?

- Dynamic
- Continuous
- Time-critical

- Integrated
 - low-level control
 - high-level cognition

Modeling Driver Behavior

- Goal: Computational model of driver behavior

 - perceptiontask scheduling
 - navigation

- control
- decision making
 - planning ...

that incorporates the "human element"

- attention
- motor response
- variability

- cognitionmultitasking

- emotions ...

- The ACT-R Driver Model
 - cognition: ACT-R 4.0 (45 productions)
 - perception: RPM + EMMA
 - action: special routines

Driver Model Overview

Control: Perception

■ Two-level control with near, far points

Control: Perception

- Find near point θ
- Find far point θ
- Encode far point d, type
- Perceive t
- Compute $\Delta\theta$, Δt

Control: Perception

```
(p control-attend-far
                                                         (p control-encode-far
 =goal>
                                                           =goal>
   isa drive
                                                            isa drive
   stage control-perceive
                                                            stage control-perceive
                                                            - na nil - fa nil
   lane =lane
                                                            floc = loc v = v
   - na nil
   nloc =nloc
                                                            fval nil
   fa nil
                                                            fkind nil
   floc nil
                                                          =object>
                                                            isa far
 =loc>
   isa visual-location
                                                            screen-pos =loc
   time now
                                                            kind =kind
   kind far
                                                            distance =d
   color =lane
                                                            value =value
   nearest =nloc
                                                          =state> (free)
   screen-x =x
                                                         ==>
                                                          !bind! =time (pm-time)
==>
 !send-command! :vision move-attention
                                                           !bind! =thw (thw/ =d =v)
                         :location =loc
                                                          =goal>
 !bind! =a (image->angle =x)
                                                            stage control-steering
 =goal>
                                                            fd = d
   fa =a
                                                            fthw =thw
   floc =loc)
                                                            fval =value
                                                            fkind =kind
                                                            time =time)
```

Control: Action

■ Steering = $f(\Delta\theta_{far}, \Delta\theta_{near}, \theta_{near}, \Delta t)$

$$\Delta steer = c_1(\Delta q_{far}) + c_2(\Delta q_{near}) + c_3(q_{near})\Delta t$$

■ Acceleration = $f(\Delta THW_{car}, THW_{car}, \Delta t)$

$$\Delta acc = c_4(\Delta THW_{car}) + c_5(THW_{car} - THW_{follow})\Delta t$$

Control: Action

```
(p control-steering
 =goal>
   isa drive
   stage control-steering
   oldgoal =oldgoal
   na =na
   fa =fa
   time =time
   fval =fval
 =oldgoal>
   isa drive
   na =na2
   fa = fa2
   time =time2
   fval =fval
==>
 !eval! (let ((na =na)
         (dna (-=na=na2))
         (fa = fa)
         (dfa(-=fa=fa2))
         (dt (- =time =time2)))
      (do-steer na dna fa dfa dt))
 =goal>
   stage control-speed)
```

Control: Lane Changing

■ Switch control from start → end lane

Monitoring

- With some probability (.33)
 - choose random lane (left/right)
 - choose random direction (front/back)
 - look for car in chosen lane/direction
 - if exists, note its location
- Thus, memory contains mental model of current situation

Decision Making

- If lane change is desired (THW < THW for passing)</p>
 - look at or recall cars in other lane
 - uses mental model of environment
 - if no cars pose a danger,
 make decision to change lanes

Driver Model: Eye Movements

- EMMA: integrated model of eye movements and visual attention (Salvucci, in press)
 - spotlight of attention moves rapidly and often
 - eyes move only occasionally to focus of attention

Environment: Nissan CBR Simulator

Human Driver Replay

Model Replay

Model Results: A Sampling

- Steering & Curve negotiation
- Steering & Lane changing
- Attention & Lane keeping
- Effects of workload
- Ongoing work

Result: Steering & Curve Negotiation

How do drivers steer around curves?

steering wheel angle

lane position

Result: Steering & Lane Changing

How do drivers steer through a lane change?

Result: Attention & Lane Keeping

Where do drivers look while driving?

gaze dwell ratios

Result: Effects of Workload

- How do secondary tasks affect driving?
- Four possible hands-free cell phones
 - full-manual

- full-voice
- speed-manualspeed-voice

lateral deviations (RMSE) while dialing

Major ACT-R Issues

- Conversion to ACT-R 5.0
 - should happen in the next few months
- Multitasking / task scheduling
 - e.g., monitoring, secondary tasks
- Perceptual-motor modules
 - perception: 3D? motion?
 - action: steering / pedaling modules?
- Production time (effort)
 - model requires 10ms instead of default 50ms
 - Mike B: composition of complex behaviors?

On My Wish List...

- Easy-to-use environment for generating useful predictions with the driver model
- Sample scenario
 - specify a GOMS model for a new cell phone device,
 translate to interact with ACT-R
 - specify individual driver parameters (e.g., age) and driver state (e.g., fatigue, alcohol)
 - → translate to ACT-R parameters
 - run the simulation to generate *a priori* predictions of behavior e.g., to test for driver distraction

A Symbiotic Relationship

- The driving domain will help inform and evaluate ACT-R for complex dynamic tasks
 - real-world perception, action, multitasking, ...
 - a priori predictions (!!)
- ACT-R can (and will ②) have a significant practical impact in the driving domain
 - Driver Intentions: ACT-R can help infer intentions
 - Driver Distraction: ACT-R can help save lives (!?)